neighbour$548178$ - определение. Что такое neighbour$548178$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое neighbour$548178$ - определение

SPATIAL INTERPOLATION METHOD
Natural neighbour; Natural neighbour interpolation; Natural neighbor

Oliver Neighbour         
Neighbour, Oliver
Oliver Wray Neighbour, FBA (1 April 1923 – 20 January 2015) was a British musicologist and librarian.
Beggar thy neighbour         
ECONOMIC IMPROVEMENT ATTEMPT THAT CAUSES WORSE CONDITIONS FOR OTHER COUNTRIES
Beggar-thy-neighbour; Beggar thy neighbor; Beggar-thy-neighbor
In economics, a beggar-thy-neighbour policy is an economic policy through which one country attempts to remedy its economic problems by means that tend to worsen the economic problems of other countries.
Natural neighbor interpolation         
[neighbor interpolation with Sibson weights. The area of the green circles are the interpolating weights, wi.

Википедия

Natural neighbor interpolation

Natural neighbor interpolation is a method of spatial interpolation, developed by Robin Sibson. The method is based on Voronoi tessellation of a discrete set of spatial points. This has advantages over simpler methods of interpolation, such as nearest-neighbor interpolation, in that it provides a smoother approximation to the underlying "true" function.

The basic equation is:

G ( x ) = i = 1 n w i ( x ) f ( x i ) {\displaystyle G(x)=\sum _{i=1}^{n}{w_{i}(x)f(x_{i})}}

where G ( x ) {\displaystyle G(x)} is the estimate at x {\displaystyle x} , w i {\displaystyle w_{i}} are the weights and f ( x i ) {\displaystyle f(x_{i})} are the known data at ( x i ) {\displaystyle (x_{i})} . The weights, w i {\displaystyle w_{i}} , are calculated by finding how much of each of the surrounding areas is "stolen" when inserting x {\displaystyle x} into the tessellation.

Sibson weights
w i ( x ) = A ( x i ) A ( x ) {\displaystyle w_{i}(\mathbf {x} )={\frac {A(\mathbf {x} _{i})}{A(\mathbf {x} )}}}

where A(x) is the volume of the new cell centered in x, and A(xi) is the volume of the intersection between the new cell centered in x and the old cell centered in xi.

Laplace weights
w i ( x ) = l ( x i ) d ( x i ) k = 1 n l ( x k ) d ( x k ) {\displaystyle w_{i}(\mathbf {x} )={\frac {\frac {l(\mathbf {x} _{i})}{d(\mathbf {x} _{i})}}{\sum _{k=1}^{n}{\frac {l(\mathbf {x} _{k})}{d(\mathbf {x} _{k})}}}}}

where l(xi) is the measure of the interface between the cells linked to x and xi in the Voronoi diagram (length in 2D, surface in 3D) and d(xi), the distance between x and xi.